THERMOLYSIS OF (SILYL) METHYL-BENZYL-ETHERS:

EVIDENCE FOR ANCHIMERICALLY ACCELLERATED BOND HOMOLYSIS

M.T. Reetz and M. Kliment

Fachbereich Chemie der Universität, 355 Marburg, W-Germany (Received in UK 21 January 1975; accepted for publication 31 January 1975)

Anchimerically assisted unimolecular bond homolysis represents a very rare organic reaction type¹). Unambiguous examples in which the assisting group <u>migrates</u> to the site at which bond cleavage occurs have not been described to date: R^1 a b R^2

Reactions of this type may occur generally if the radicals a and R^2 are stabilized, and if the new bond $b-R^1$ is very strong. We wish to report some observations which may be explained on the basis of this proposal. Heating compounds $\underline{1}$ to 150-195° results in smooth positional exchange of the silyl and benzyl groups (96-99 % yield of $\underline{2}$).

c) R + R = bipheny1-2,2'-ylene
Ø = p-methylpheny1

 \emptyset = pheny1

d) R + R = bipheny1-2,2'-y1ene
Ø = p-methoxypheny1

e) R + R = bipheny1-2,2'-y1ene
Ø = p-nitropheny1

Although this rearrangement formally represents a dyotropic process²⁾, the following studies point to a homolytic cleavage with neighboring group participation of the Si-group: 1) Benzyl radicals can be intercepted (up to 84 %) by carrying out the reaction in the presence of a radical trapping agent (p-benzoquinone). 2) The Si-groups migrate 100 % intramolecularly, as shown by crossover experiments. 3) The rate dependence on solvent polarity is small: for $\underline{1b} \rightarrow \underline{2b}$, $k_{\text{rel}} = 1,0$ (benzene), 1,5 (o-dichlorobenzene), 4,9 (propylene carbonate). 4) The activation parameters for $\underline{1b} \rightarrow \underline{2b}$ were found to be $\Delta G^{\ddagger} = 32,6 \pm 0,6$ kcal/mol, $\Delta H^{\ddagger} = 31,7 \pm 0,6$ kcal/mol, $\Delta S^{\ddagger} = -8,6 \pm 0,8$ e.u. 5)Addition of radical initiators or inhibitors has no influence on the reaction rate.

Homolyses of C-O bonds liberating alkoxy and benzyl (or allyl) radicals require activation energies of more than 45 kcal/mol³⁾. The present value of 32,6 kcal/mol as well as the negative ΔS^{\ddagger} is consistent with the involvement of the Si-group. Rate determining migration of the Si-group toward the O-atom weakens the O-C (benzyl) bond. Collapse of the activated complex leads to resonance stabilized benzhydryl (or fluorenyl) and benzyl radicals and brings about the complete formation of the strong Si-O bond. Steric factors appear to be unimportant, since the t-butyl analog of lb was found to be stable under the reaction conditions:

The relative rates of the p-substituted benzyl ethers $(\underline{1b-e})$ reveal a small polar effect: $k_{rel} = 1.0(H)$, $1.5(CH_3)$, $2.2(OCH_3)$, $0.2(NO_2)$. The 0-C bond does not appear to be stretched to a large extent in the transition state. Further studies including groups other than Si are under way.

This work was supported by the Deutsche Forschungsgemeinschaft. References:

1) J.E.Leffler, R.D.Faulkner and C.C.Petropoulos, J.Amer.Chem.Soc., <u>80</u>, 5435 (1958); J.C.Martin and T.W.Koenig, <u>ibid.</u>, <u>86</u>, 1771 (1964).

- 2) M.T.Reetz, Tetrahedron, 29, 2189 (1973).
- 3) F.M.Elkosbaisi and W.J.Hickinbottom, J.Chem.Soc., 1286 (1960); K.Kwart, S.F.Sarner and J.Slutsky, J.Amer.Chem.Soc., 96, 5234 (1973).